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LINEAR FINITE ELEMENT METHODS
FOR PLANAR LINEAR ELASTICITY

SUSANNE C. BRENNER AND LI-YENG SUNG

ABSTRACT. A linear nonconforming (conforming) displacement finite element
method for the pure displacement (pure traction) problem in two-dimensional
linear elasticity for a homogeneous isotropic elastic material is considered. In
the case of a convex polygonal configuration domain, @(h) (& (h?)) error
estimates in the energy (L2) norm are obtained. The convergence rate does not
deteriorate for nearly incompressible material. Furthermore, the convergence
analysis does not rely on the theory of saddle point problems.

1. INTRODUCTION

We consider finite element approximations of the pure displacement and pure
traction boundary value problems in two-dimensional linear elasticity associated
with a homogeneous isotropic elastic material.

It is well known (cf. [5]) that the convergence rate for the standard displace-
ment method using continuous linear finite elements deteriorates as the Lamé
constant 4 becomes large, i.e., when the elastic material is nearly incompress-
ible. Various methods have been proposed which work uniformly well for all
A, for example the p-version method of Vogelius in [22], the PEERS method
of Arnold, Brezzi, and Douglas in [1], the mixed method of Stenberg in [20],
the Galerkin least squares method of Franca and Stenberg in [11], and the non-
conforming methods of Falk in [10]. A common theme in these works is that
the convergence analysis is reduced to the study of the stability condition for a
saddle point problem.

Here we will directly prove (without referring to any saddle point prob-
lem) the uniform convergence with respect to A of two displacement meth-
ods using conforming and nonconforming finite elements. What we need in
the convergence proof is an interpolation operator Il with the property (P):
divg = 0 = divIIl¢ = 0. Such an operator does not exist for the conforming
linear finite element space, which explains the deterioration of the convergence
rate. This difficulty can be overcome in two ways. First, one can enlarge the
finite element space by using nonconforming finite elements, which is the ap-
proach that we adopt for the pure displacement problem. Second, one can keep
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the conforming linear finite element space, but use reduced integration in the
formulation of the discretized equations, so that (P) only needs to hold in a
weaker sense. This is the approach that we take for the pure traction prob-
lem. In both cases we obtain uniform @& (h) energy norm estimates for the
discretization error, and for the pure displacement problem we also obtain a
uniform & (h?) L?-norm estimate. In our proof we also use some properties of
the divergence operator developed by Arnold, Scott, and Vogelius in [2]. Our
methods are robust in the sense of Babuska and Suri (cf. [3, 4]).

In order to write down the equations of the boundary value problems, we in-
troduce the following notation. Throughout this paper, an undertilde is used to
denote vector-valued functions, operators, and their associated spaces. Double
undertildes are used for matrix-valued functions and operators. We define

_ ap/axl . _(3‘[11/3)61-1-3112/3)62)'
gﬁdp_(ap/a)Q)’ dlyg_ 3‘[21/(9X1+6‘L'22/(9X2 ’

_ 6p/6x2 . _
curl p _(—ap/axl) , leE =0v1/0x) + 0v2/0Xx>,
_ _ (0v1/0x1 Bv;/0x;
rotg = —0v1/0x, +0v2/0x1, ggd v = <8v2/6x1 90202

We also define

where

Finally,
£(v) = 5[ grad v + (grad v)'].

The pure displacement boundary value problem for a two-dimensional ho-
mogeneous isotropic material is given by
—div{2pue(u) + Atr(e(u))d} =

~
~

in Q,
(1.1)

u=

~

on 9Q),

20o z\

where Q C R? is the configuration domain, u is the displacement, f (x) is the

body force, and A, u > 0 are the Lamé constants. The pure tractlon problem
is given by

—d1v{2u£(u) +Atr(s(u))

g} f inQ,
(1.2) (2ug () +Atr(g(w)d)v = &

on 9Q),

where v is the unit outer normal. For simplicity, we only consider the case
where Q is a bounded convex polygonal domain throughout this paper.
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In the treatment of the pure traction problem we need the spaces (k > 1)

(1.3) ﬁk(9)={veH’<(Q): vdx=0,/rotva’x=0}.
N ves o~ ~ Jo T

We also use the following conventions for the Sobolev norms and seminorms:

1/2
(1.4) olm = | [ 3 lomufdx |
~ 2 jal<m
1/2
(1.5) V() := /Z|8"v|2dx .
LH 0l

The rest of the paper is organized as follows. In §2 we give the relevant
results from the theory of partial differential equations on polygonal domains.
We prove in Lemmas 2.2 and 2.3 that there exist uniform elliptic regularity es-
timates for || u | 2 +4ll div g|| (g for the boundary value problems (1.1) and

(1.2). To the best of our knowledge, these estimates have not appeared explicitly
in the existing literature in the context of convex polygonal domains. Section
3 contains a discussion of the pure displacement problem, and §4 contains a
discussion of the pure traction problem.

2. RELEVANT RESULTS FROM THE THEORY OF PARTIAL DIFFERENTIAL
EQUATIONS ON POLYGONAL DOMAINS

We consider the Lamé constants (x4, A) in the range [uo, u1]x (0, o), where
0 < po < p <oo. Welet C denote a generic positive constant, independent
of u and A, with its dependencies listed as its subscripts. The same symbol
may take different values in different contexts.

We begin with some properties of the divergence operator.

Lemma 2.1. Let Q C R? be any bounded polygonal domain and let 1 = 1 or
2. There exists a positive constant Cq such that given any v € H'(Q) N H\(Q)

(respectively, v € H'(Q)), there exists w € H'(Q) N H(Q) (respectively, w €
{7’(9) (¢f. (1.3))) such that

2.1) divw = divo
and
(2.2) lwligg) < Call div vl gi-1(q) -

Proof. If v € H'(Q) N H{(Q), then the existence of w with properties (2.1)

and (2.2) follows from Theorem 3.1 and the inclusion (3.2) in [2]. It should be
noted that the analysis for this case is much deeper than the following simple
argument for the second case.

If ve Ij’ (Q), then divv € {I"‘(Q) . Let D be an open disc that contains

Q. There exists an extension operator (cf. [18]) E: H='(Q) — H'~!(D) such
that

(23) ”E(q>”H/—l(D) < CQ“q”H’—l(Q) Vq € HI—I(Q)
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and

(2.4) E(@la=4q YgeH™Y(Q).
Let { € H*'(Q) be the solution of

A? = E(divv) in D,

(2.5)

(=0 on dD.
Then from elliptic regularity (cf. [18]) we have
(2.6) €1l zz1(py < CallE(div V)| gi-1(p) -
Let

w = g{gdCln—llﬁl/Qg[gdCdx.

It is clear that w € H' (Q). Properties (2.1) and (2.2) then follow from (2.3)-
(2.6). O

Since the boundary of a polygon has corners, the boundary conditions in (1.1)
and (1.2) must be carefully interpreted. We shall denote by S;, 1 < i< n, the
vertices of Q, by I';, 1 <i < n, the open line segments joining S; to Si.;,
by 7; the positively oriented unit tangent along I';, and by v; the unit outer
normal along I';. Henceforth, indices involving the vertices and edges of Q
should be interpreted as integers modulo 7.

Let p € HY*T,) and q € H'/>(T';,;). We say that p = g at S, if
fo lg(s) (—5)|* < ds < o0, where s is the oriented arc length measured from
Sit1, and 5 isa posmve number less than min{|T;|: 1 <i < n}.

Lemma 2.2. Let Q C R? be a bounded convex polygonal domain, f € L*(Q),
8i € H3/2(F), and g,( Siv1) = gis1(Siy1) for 1 < i < n. Then the pure

dzsplacement problem
—d1v{2us u) + Atr(e u))é} = in Q,

2.7
(27) ulr,=gi Jor1<i<n

has a unique solution ue I:I 2(Q). If we assume further that Y 7_, fr, givvi ds =
0, and

38 Virl = i+l
g1 80 KL= o Bl

at Siy1 for 1 < i< n, then there exists a positive constant Cq such that

(2.8) ||u||H2(Q) + Al div u”H‘(Q) < Ca {||f||L2(Q) + Z ||g1||H3/2(F } .
i=1
Proof. The existence, uniqueness, and smoothness of the solution (2.7) are well
known (cf. [14, 18, 21]). Here we will indicate how the estimate (2.8) can be
obtained.
Observe that the conditions on g, are equivalent to (cf. [2]) the existence

of a function z € H3(Q) such that curlzlr, = g; for 1 < i < n, which
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is a necessary condition for (2.8) to hold for all A € (0, co). Moreover, it
follows from Theorem 6.2 of [2] that z can be chosen with the property that
lzllms@) < CaXisi I&illgnr, - Therefore, it suffices to establish (2.8) for

u — curl z, or equivalently, we may assume g; = 0 without loss of generality.

In other words, we assume that u € H>(Q) N H)(Q) satisfies
(2.9) —div {2pe(u) + Atr(e(u))d} = f in Q.

We first show that there exists a positive constant Cg such that

(2.10) ||£||HI(Q) +All divz“LZ(Q) < CQ||f||L2(Q)-
Let w € H\(Q). By integration by parts, it follows from (2.9) that

(2.11) 2/4/ s(u):s(w)a’x+l/(divu)(divw)a’x= f-wdx.
QR ~ =~ Q ~ ~ Q~ -~

If we let w =wu in (2.11), we obtain

(2.12) 2 [ 80 20 dx < If Il
By using Korn’s first inequality and Poincaré’s inequality (cf. [12, 18]), we have
(2.13) lullm) < Callf Nl g -

By Lemma 2.1, there exists w* € H}(Q) such that

(2.14) divw* = divu
and
(2.15) lw* ||z (@) < Call div |12 -

It follows from (2.11) and (2.14) that

A [[divaldx <If layle e

+ 2#”2(%)”1}(9)||g(13*)||L2(Q) .

(2.16)

Together with (2.13) and (2.15), we have
(2.17) Alldiv ulr2q) < Callf Nl @) -

The estimate (2.10) now follows from (2.13) and (2.17).
Next we will show that there exists a positive constant Cq such that

(2.18) Ul 2@ + Al div ] ya) < Call Sl 2@ -

Observe that it suffices to prove (2.18) for 4 > 1o, where Aq is a sufficiently
large number. (The case A < 4y follows directly from standard elliptic regularity
estimates for (2.9).)
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From Lemma 2.1, there exists ¢ € H2(Q) N H}(Q) such that

(2.19) div ¢ = divu

and

(2.20) ||<Z~S ||1~12(Q) < Cal div g -
Observe that equation (2.7) can be rewritten as

(2.21) —qu —(u+4)grad (divg) = j:

Define

(2.22) g’ '=u-¢ and p:=- (#TH) divu.

Then (', p) € (H*(Q) N H(Q)) x H'(Q) satisfies the following Stokes equa-
tions in Q:

—Au' +gradp = %f+Ad>,

(2.23)
div g’ =0.
Observe that by using (2.13) and (2.20) we have
(2.24) ||?i||1~12(g) < Caof] dng|H1(Q) + ||J:||£2(Q)) .
By Theorem 2 in [16],
(2.25) ||g'||1:12(9) +Plav) < Ca {%“[”52(9) + ||A?||£2(Q)} .
Substituting (2.22) into (2.25) and applying (2.24) yields

+4

(2.26) ]l ) + a |divulga) < Cofllf Il @) + [div ulpg)}-

Let A9 = 2Cqu; , where Cgq is the constant in (2.26). For A > g, we obtain
from (2.26) that
AL
(2.27) ||g||1~12(9) + 2—M|leg|H1(g) < CQ||J:||1~12(Q) ,
which implies (2.18) for A > 4y. O

We now turn to the pure traction problem. For this problem to be solv-
able, certain compatibility conditions must be satisfied. For that purpose we
introduce the space of infinitesimal rigid motions RM := {v: v' = (a + bx>,

c—bx)), a,b,ceR}.

Lemma 2.3. Let Q C R? be a bounded convex polygonal domain. Let f €
LXQ), gi€ H'/XT), and gi~vis1 = gip1+v; at Sy for 1<i<n. Assume
the follo;ing compatibility cgndition to Nhold :

n
(2.28) /f.vdx+2/ gi-vds=0 Yve RM.
Q i—1 /oL~ ~

~
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Then the pure traction problem

—d1v{2;w +Atr(s(u))5} f inQ,

2.29
(2.29) (2pe(u) +ltr(£(~))é)zi|r‘ =g, 1<i<n,

~

has a unique solution u € H*(Q) (cf (1.3)). Moreover, there exists a positive
constant Cq such that

~

i=1
Proof. The existence, uniqueness, and smoothness of the solution of (2.29) are
well known (cf. [14, 15, 18, 21]). It remains to establish the estimate (2.30).
In the case of a domain with smooth boundary, this estimate was proved by
Vogelius in [22].
First we show that it suffices to establish (2.30) in the case f=0.

(2.30) ull 2@y + Al div ull @) < Ca {”f”U @+ Z I8 :ll e } .

~

From Lemma 2.2, there exists a unique solution w € H?(Q) N H(Q) such
that

(2.31) ~ div{2ug(w) + Atr(z ()8} = f in Q
and
(2.32) ||1£||H2(Q) +Aldivw| ) < CQ||f||L2(Q)~

Let (a,¢)' = Jqwdx, b=3 Jorotwdx, and

(2.33) 'ti/ w4+ (—a+bxy, —c — bxy)".

Then w* € H?(Q) such that

(2.34) — diV{Z/w *) + ltr(g( ))2} = j: in Q
and
(2.35) ”QE*‘”I;IZ(Q) + Al divw™|[ g q) < CQ||J:||£2(Q)
Let

= (2ug(w") + Atr(g(w"))9)vilr, = 2ue(W*)vilr, + A(divw*)vilr, .

~

From the trace theorem and (2.35), we have
(2.36) gl e,y < Callf 2@ -

In view of the estimates (2.36), we may instead establish (2.30) for ¥ —w*. In
other words, there is no loss of generality if we assume f =0 in (2.29).

The compatibility condition (2.28) now becomes

n n
(2.37) Z/ gids=0 and Z/r(ngn —Xx1812)ds =0
=10 i=1 "%
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Using (2.37), we can define (cf. [15, §2]) &;, A;, and k; such that &,(S)) = 9 ,
m(S1))=0,andfor 1 <i<mn,

(2.38) $i(Siv) = f:+l( Sit1), hi(Siv1) = hir1(Siv1),
and :
0 0 0
(2.39) a—rifil =—8i2, ‘a_ﬁéﬂ =81, ki=di-vi, %hi =&itTi

It follows that &; € H¥*(T';), k; € H¥*(T;), and h; € H*?(T';) . Moreover, we
have

n
(2.40) Y Ulkill sy + Waill s, < an I8 ill e,
i=1

i=1
Using the symmetry of {2u¢(u)+ A(tr&(u))d} and (2.29) with /=0, we can
define (cf. [15, §2]) the Airy stress function ¥ such that

32 duy ouy
pye 2 = (2u +l) +Aa—xl
02 du;  Ouy
41 — r =4
(2:41) %10 %3 [3)62 * Bxl] :
%y du, duy
ox3 - (2ﬂ+l)6x ’10_x2
and
Azt// =0 onQ,
?—W = ki on 1“,~.
Bui T;

Note that (cf. [15, §2] and [13, Theorem 1.5.2.8]) the conditions é (Siy1) =
Eir1(Siv1) s hi(Siv1) = hiy1(Sis1) , and 8i*Vis1 = iv1-Vi at Siv1 for 1 <i<n

imply the existence of A € H3(Q) such | that

ai
(2.43) Alr, = hi, D o ki,
and
n
(2.44) 1Al < Ca > kil + il s} -

i=1
It follows from (2.42) and (2.43) that
Ay —1)=-A’A onQ,
(W =Mlr, =0 onT;,

9y -4
Bu[

(2.45)

=0 onI};.
T
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From the elliptic regularity of the biharmonic equation (cf. [6, 13]) we have

(2.46) v = Ml < CallA?ll-1(q
which in view of (2.40) and (2.44) implies that

(2.47) 1¥llm@) < Ca Z Igill i,

~

i=1
From (2.41), we have

2u+ 2 divu = g "1; + ‘Zx‘g,

duy _ (2u+A) 9%y A 9y
(2.48) ox;  4u(u+A) ax2  Au(u+2)ox:’

ouy  (2u+2) 9%y A 0%y

dxy  du(u+A)ax?  Au(u+i) ox3’

Lo du) Lo

210xy 0x 21 0x10x%;°
Combining (2.47) and (2.48), we obtain

(2.49) Alldiv i) < CQlegl“H'/Z(l“
i=1

and

(2.50) ||g(g)||Hl < Cﬂz ||g:||H1/2(r)

i=1

By Korn’s second inequality (cf. (4.2) below) and Friedrichs’ inequality (cf.
[18]), inequality (2.50) implies that

(2.51) ||g||HI <CQZ”gt”H'/2(F
i=1

Since the second-order derivatives of #; and u, are linear combinations of the
first-order derivatives of the components of 3 (u) , we have by (2.50) that

(2.52) |u|H2(Q) < Cﬂz ||gl||H1/2(F)

i=1
Inequality (2.30) now follows from (2.49), (2.51), and (2.52). O

3. THE PURE DISPLACEMENT PROBLEM

We shall only consider the case of homogeneous boundary conditions, i.e.,
gi =0 for 1 <i < n. Our result can then be easily extended to the more

general case where g; € H32(T;), ¥I, Jr, 8 +vids=0,and

0
- 8i 1= 1V
arl ~l l+ aT,+1§l+ ~l

at Siy for 1 <i<n.
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The boundary value problem (2.7) can be rewritten as:

—uAu — (u+ A)grad(divu) = f in Q,
(3.1) ~
u=0 onoQ,

where f € L?(Q). It has the following weak formulation: Find u € H{(Q)
such that

(3.2) /4/9 grad u: grad vdx+(u+i)/(divu)(divv)dxz frvdx
=~ = ~ Q ~ ~ Q~ ~

for all v € H\(Q).

By Poincaré’s inequality, there exists a unique solution to problem (3.2),
which is therefore the solution of (3.1). From Lemma 2.2, we know that the
solution is actually in H*(Q)N H)(Q).

In order to discretize (3.2), we introduce a triangulation .7, . Here we let
the subscript 4 represent the maximum of the diameters of the triangles in the
triangulation. Let

Vy={v:veL*Q),v|r is linear for all T € F},
(3.3) v is continuous at the midpoints of interelement boundaries

and v = 0 at the midpoints of edges along 9Q}.

For S L/" , we define ggdhzi and divy, v by
(3.4) (gradyv)lr = grad(v|r),
(3.5) (divyv)|r = div(v|r) VT €.
The discretized problem is: Find up € I:h such that
[ radius : eradyy dx + (u-+2) [ (divi)(divy v) dx

=/f-vdx
O~ ~

forall veV,.
Let a,(-, -) be the symmetric positive definite bilinear form defined on V', +
(H*(Q) N Hy(Q)) by

(3.6)

ap(vy, v2) = ﬂ/ grad,v, : grad,vadx
~ ~ Q _~ ~ _— ~
(3.7)
+(u+4) / (divy vy)(divy v2) dx.
q ~ ~
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Problem (3.6) can therefore be written as
(3.8) ap(up,v)= | f-vdx
S Q~ ~

for all v € V). By the positive definiteness of (-, -), equation (3.8) has a
unique solution u, € V.

We define the nonconforming energy norm |- ||, on V, + (H*(Q) N H})(Q))
by

(3.9) lolls = an(v, v)'/2.

It is obvious that
-1/2
(3.10) lgradyvllza) < g 10l

There is an interpolation operator II,: H2(Q) N H}(Q) — V), defined by

(3.11) M) me) =7 [dds,

where m, is the midpoint of edge e¢. Then (cf. [9])

(3.12) div(Ty)|r = l—;“l /Tdiv?dx VT e 7,

and

(3.13) ||f - thHINJ(Q) + hHggdh((lj - Hh?)“él(ﬂ) < Ceh2|¢N5|132(Q) ,

where 0 is the minimum of all the angles in the triangulation 7, .
Theorem 3.1. There exists a positive constant Cq ¢ such that
(3.14) e — unlln < Ca,ohllf N2 -

Proof. Our analysis closely follows that of Crouzeix and Raviart for the Stokes
problem in [9]. Let u; be the a(-, -)-orthogonal projection of u into V.

Following [19], we can deduce an abstract discretization error estimate:
lae = walln < e = whlla + l1gh — wnlln

|ah(%;._ ’Z'ih 5 g)l

INA

inf ||u—v|,+ sup
(3.15) “thHN 2l ver,\{0} V]l

Iahu v) fo vdxl
1nf lu—vllp+ sup

vevV ueV,,\{O} ”E”h

~ o~

IA
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Using integration by parts, the weak continuity of v, and the Bramble-
Hilbert lemma (cf. [7, 9]), we have

/gradu:gradhv dx+ [ Au-vdx
Q = ~ =~

(3.16) @ -
< Ca,ohlulm o llgradnv|l 2 o)
and
/ divudiv,vdx + / grad(divu) - v dx.
(3.17) @ ¢

< Co, | div g (q)llgradyvl| g -

Combining (2.8), (3.1), (3.7), (3.10), (3.16), and (3.17), we have

ap(u,v)— | f-vdx
AR
(3.18) < CQ,0/1||gf§dhg||1;2(n){ﬂ|g|1~12(a) + (u+ A div g}

< Ca,ohllV]Iallf N2y -

By Lemma 2.1 there exists u; € H?(Q) N H{(Q) such that

(3.19) diviy = divu
and
(3.20) 1l @) < Call div ull (g -

Combining (2.8) and (3.20), we have

C
(3.21) ||g1||f~12(9) < ﬁll{“i}(m-
Note that (3.12) and (3.19) imply that
(322) dth I"Ihul = dth l'Ihu .

Using (2.8), (3.7), (3.9), (3.13), (3.19), (3.21), and (3.22), we obtain

inf (|lu —vllp) < llu - Iyull,
'UEV;, ~ ~ ~ ~

~ o~

(3.23) = (Il”gfﬁdh(g - th)”iz(g) +(un+ A dth(Zl - thl)”iz(g))l/z

< Ca,ohllf 2@ -

The theorem now follows by combining (3.15), (3.18), and (3.23). O
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Theorem 3.2. There exists a positive constant Cq ¢ such that
(3.24) ||1{ - Eh”LZ(Q) < CQ,0h2||f||L2(Q)-

Proof. The proof is based on a duality argument. We have

| Jo(u — up) - w dx|
(3.25) flu— uh||L2(Q) = sup
~ N weL2(Q)\{0} w22 )

Given w € L2(Q), let { € HX(Q)n H(Q) satisfy
—pAL — (u+A)grad(div{) =w inQ,

~

(3.26) ‘- 0 onoQ
and E n € I:h satisfy )

(3.27) ah(Ch,g)z/tg-gdx YwevVy.
By Lemma 2.2 we have tl:e estimaté2

(3.28) €00y + 211 div ¢l < Callw oy -

By Theorem 3.1 we also have
(3.29) ||£ = Calln < Ca,hllwll L) -
Using (3.27), the Cauchy-Schwarz inequality, and (3.8), we have

'/(u—uh)-wdx
o~ ~ s

=lan(C, u) = an(Cn, up)l

=1an(€ = Ch u— L) + an(§ = Cp, Thyu)

(3.30) +an(Cn — T, u—up) + ap(ILC, u —uy)|

< W& = Callalle = XTpully + 1€ = 7aCllalle — wnlln
+lan(€ = Cos ) + lan (i, = up)].

Note that (3.14), (3.28), (3.29), and the argument that led to (3.23) imply
that

(3.30) €= Callallu =TT, ullp+ 11 p=TThE llnll—unlln < Cn,ahzlllgllfzm)llfIIEZ(Q)-
It remains to estimate |a;(I1,¢, u—up)l =lay(Iy¢, u) - Jof - (I1,¢)dx| and
an(§ = Chs Thyn)| = an(¢ , o) = fow - Thyudx] S

Using integration by parts, the weak continuity of I1,¢, and the Bramble-
Hilbert lemma (cf. [9]), we have ”

/ggdhl'[h{:ggdudx+/ I, - Audx
(3.32) Q ~ ~o =" Q@ ~ 7

< CQ,ah2|§|H2(Q)|ng2(Q)
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and

' / (divy T, ) (div u) dx + / I1,{ - grad(divv) dx
(3.33) o A~ o 2 ~

< Ca,oh* || ey div Ul (g -

Combining (2.8), (3.1), (3.7), (3.28), (3.31), (3.32), and (3.33), we have

ap(IL&, u) - Q{' (th)dx

(3.34) < CQ,th‘EIHZ(Q){I‘|Z|H2(Q) + (1 + A)| div ul g )}

< Cg,ehzﬂ?fnfz(n)nfH£2(9)-
Similarly, we have
(3.35) |an(€ = Cns Iu)| < Cn,oh2||1£||£2(n)||[||£2(Q)-
It follows from (3.30), (3.31), (3.34), and (3.35) that

(3.36)

=) wax| < Caab el I

The theorem now follows from (3.25) and (3.36). O

4. THE PURE TRACTION PROBLEM
We assume here that all the assumptions in Lemma 2.3 hold. To simplify
notation, we shall write the sum Y}, fr, gi-vds as [,, g-vds. The boundary
value problem (2.29) has the following weak formulation: Find u € H Q) (cf.
(1.3)) such that

Zu/ﬂe(g):g(g)dx+l/g(divg)(divz~;)dx

=~

= f-vdx+/ g-vds
Q~ v o~

(4.1)

forall v € H(Q).

The following Korn’s second inequality is well known (cf. [10, 12, 18]): There
exists a positive constant Cq such that

(4.2) le@)lz@) = Calvlme) Vv e HY(Q).

In view of inequality (4.2), problem (4.1) has a unique solution, which is the
solution of (2.29). From Lemma 2.3, we know that the solution is actually in
H*(Q).

Let 7, be a triangulation obtained by connecting the midpoints of edges in
the triangulation %, . Define

(4.3) Wy = {v e H'(Q): v|r is linear for all T € 7;}
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and
(4.4) My, = {v € L*(Q): v|r is a constant for all T € 3} .
Let Py be the orthogonal projection from L2(Q) onto Moy , i.e., for w € L*(Q)
(4.5) /(Pow)a’x = / wvdx Yv € My,.
Q Q

The discretized problem, introduced by Falk in [10] (where a uniform conver-
gence result based on a mixed formulation was outlined), is: Find u;, € W),
such that

2;1/ e(up):e(v)dx +l/ (Podiv uy,)(Pydivy)dx

(4.6) 2 ) @

= [ f-vdx+ g-vds
Q~ ~ aQ~ "~

forall v e W;,.

The aiscretized problem (4.6) is an example of the method of reduced inte-
gration. We refer the readers to [17] for more information on this technique.
Let ay(-, -) be the symmetric bilinear form defined on H!(Q) by

(4.7)  ay(vy,vr) = 2,u/ e(vy): a(vz)a'x+1/ (Pydivyy)(Pydives)dx.
~ ~ Qz ~ o~ Q ~ ~
Problem (4.6) can be rewritten as

(4.8) ap(uy, v) = f-vdx+/ g-vdx Vve/W';,.
~ Q% ~ 5 ~ o~

~ as ~
By (4.2), ay(-, -) is positive definite. Hence (4.8) has a unique solution u; €

Wy.
We define the (7,-dependent) energy norm || - ||, on IEI 1(Q) by

(4.9) Ills = an(v, v)'72.
It is obvious from (4.2) that there exists a positive constant Cq such that
(4.10) V@) < Callv]ls-

Let J,: H*(Q) — W, := {v € H(Q): v|r is linear for all T € J,} be

defined in the following way. Let p be a vertex of .7, . If p is also a vertex of
Fa » then ‘

(4.11) (h9)(p) = 9(p)..

Otherwise, there exist two vertices p; and p, of 7 such that p is the mid-
point of the edge e connecting p; and p,. Then

) B(p1) + $(p2)
(412) o) = 7 [ pds— .
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By the divergence and curl theorems and the fact that J,¢ is piecewise linear,

it is immediate that

(4.13) / div(J,8) dx = / divédx
T ~ T o~

and

(4.14) /rot(thS)dx:/rothdx
T ~ T o~

forall T € 7.
Observe that (J,@)|r = ¢|lr if ¢ is linear on T € F,. Therefore, the

Bramble-Hilbert lemma and a homogeneity argument imply that there exists a
positive constant Cy such that

(4.15) Hf - th”LZ(Q) +hl¢ — Pl o) < Cohzlf’lm(n) V‘lj € I;IZ(Q)-

Here, 0 is again the minimum angle in .9, .
Let the interpolation operator II, be defined by

(4.16) th = th - I_;Z—l/th?dx

Clearly, [,I,¢dx =0, andinview of (4.14), [,rot(IT,¢)dx =0 if [,rotd =
0. Therefore, IT, maps H2(Q) into W,.
From (4.13) we have

(4.17) PydivIly¢ = Pydive Vo € HY(Q).

It follows easily from (4.15) that
¢ — il L2 + Ald — il q

(4.18) ) -
< Ca,oh"|@l) Vo € HH(Q).

Theorem 4.1. There exists a positive constant Cq ¢ such that

n
(4.19) llu—uplln < Ca,oh {||f||L2(Q) + Z HgiHHl/Z(r,)} .
Proof. The proof of the following abstract discretization error estimate is the
same as that of inequality (3.15):

e = wnlln = inf llu = vlls
(4.20) lan(u, v) = Jo fvdx = [,q8-vdX]|

+ sup
veV,\{0} lvlln
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Using (2.30), (4.1), (4.7), (4.10), and standard interpolation error estimates

-

(cf. [8]), we have for v e W, C H(Q)

ap(u,v)— [ f-vdx - g-vds
~ O~ 0 ~

- 2#/ e(u) : a('u)dx+/’L/(P0divu)(div'u)dx
Q~ "~ o~ Q ~ ~

- fovdx—/ g-vds
Q~ ~ )

Q~ ~

(4.21) =1 / (Po div 1 — div )(div v) dx
A u = diva)(divy

< A|Podivu — div ul| 12yl div v 12(q)

< ACq,ph| div Ul (g)|v|m @)

n
< Cq gh {”f”LZ(Q) + Z ||gi||Hl/2(r,)} lvlla-

i=1

By Lemma 2.1, there exists u; € H*(Q) such that

(4.22) divy; =divu
and
(4.23) lu1llm2@) < Call div Ul ) -
Combining (2.30) and (4.23), we have
C n
(424) il < T35 { REEEDY ug,-nmn(r,)} :
Note that (4.17) and (4.22) imply that
(4.25) P() div l'I,,ul = P() div I'Ihu .

Combining (2.30), (4.7), (4.9), (4.18), (4.22), (4.24), and (4.25), we obtain
inf [lu—vlly < [lu — yul,
veWw,

= {2;4/ e(u—TIlu): e(u—Tu)dx
szv ~ "o~ ~

1/2
+ 2 / (P div(u — Hhu))zdx}
0 ‘ ©

< {2u|g - thlﬁp(g) + Al diV(gl - Hh%l)”%}(ﬂ))}l/z

(4.26)

< {Ca,oh*(|Ulipq) + Mt i)}

n
< Cq,gh {||f||L2(Q) +y° ”gi“HI/Z(F,)} .

i=1

The theorem now follows from (4.20), (4.21), and (4.26). O
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