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LINEAR FINITE ELEMENT METHODS 
FOR PLANAR LINEAR ELASTICITY 

SUSANNE C. BRENNER AND LI-YENG SUNG 

ABSTRACT. A linear nonconforming (conforming) displacement finite element 
method for the pure displacement (pure traction) problem in two-dimensional 
linear elasticity for a homogeneous isotropic elastic material is considered. In 
the case of a convex polygonal configuration domain, &(h) (&(h2)) error 
estimates in the energy (L2) norm are obtained. The convergence rate does not 
deteriorate for nearly incompressible material. Furthermore, the convergence 
analysis does not rely on the theory of saddle point problems. 

1. INTRODUCTION 

We consider finite element approximations of the pure displacement and pure 
traction boundary value problems in two-dimensional linear elasticity associated 
with a homogeneous isotropic elastic material. 

It is well known (cf. [5]) that the convergence rate for the standard displace- 
ment method using continuous linear finite elements deteriorates as the Lame 
constant A becomes large, i.e., when the elastic material is nearly incompress- 
ible. Various methods have been proposed which work uniformly well for all 
Ai, for example the p-version method of Vogelius in [22], the PEERS method 
of Arnold, Brezzi, and Douglas in [1], the mixed method of Stenberg in [20], 
the Galerkin least squares method of Franca and Stenberg in [1 1], and the non- 
conforming methods of Falk in [10]. A common theme in these works is that 
the convergence analysis is reduced to the study of the stability condition for a 
saddle point problem. 

Here we will directly prove (without referring to any saddle point prob- 
lem) the uniform convergence with respect to A of two displacement meth- 
ods using conforming and nonconforming finite elements. What we need in 
the convergence proof is an interpolation operator H with the property (P): 
div q = 0 =. div HO = 0 . Such an operator does not exist for the conforming 
linear finite element space, which explains the deterioration of the convergence 
rate. This difficulty can be overcome in two ways. First, one can enlarge the 
finite element space by using nonconforming finite elements, which is the ap- 
proach that we adopt for the pure displacement problem. Second, one can keep 
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the conforming linear finite element space, but use reduced integration in the 
formulation of the discretized equations, so that (P) only needs to hold in a 
weaker sense. This is the approach that we take for the pure traction prob- 
lem. In both cases we obtain uniform &(h) energy norm estimates for the 
discretization error, and for the pure displacement problem we also obtain a 
uniform &(h2) L2-norm estimate. In our proof we also use some properties of 
the divergence operator developed by Arnold, Scott, and Vogelius in [2]. Our 
methods are robust in the sense of Babu'ska and Suri (cf. [3, 4]). 

In order to write down the equations of the boundary value problems, we in- 
troduce the following notation. Throughout this paper, an undertilde is used to 
denote vector-valued functions, operators, and their associated spaces. Double 
undertildes are used for matrix-valued functions and operators. We define 

gradp = aplax, divT =1 Ozi/OxI 
+ aT112X2 

/~aX \T21/OX1 +0T22/0X21 

curlp - YP , ), divv = avI /xI + av2/Ox2, 

rotv=-0vI/0x2+0v2/Oxi, grad v- (7j%1X avi/0x2) 

We also define 

J=(1 I ) and tr(z)=z:5, 
0 1 

where 
2 2 

C : T = ZcJijTij . 

i=1 j=1 

Finally, 

e (v) = 2[grad v + ( grad v)t]. 

The pure displacement boundary value problem for a two-dimensional ho- 
mogeneous isotropic material is given by 

-div{2,ue(u) + Atr(e(u))5} = f in Q, 

u =g onOQ, 

where Q C R 2 is the configuration domain, u is the displacement, f (x) is the 

body force, and Ai, 1u > 0 are the Lame constants. The pure traction problem 
is given by 

-div{2,ue(u) +)itr(e(u))j} = f in Q, 

(1.2) (288e(u) +A tr(e(u) 5) v = g on aQ, 

where v is the unit outer normal. For simplicity, we only consider the case 
where Q is a bounded convex polygonal domain throughout this paper. 
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In the treatment of the pure traction problem we need the spaces (k > 1) 

(1.3) Hk(Q) ={v c Hk(Q): jvdx =O j rotvdx=O}. 

We also use the following conventions for the Sobolev norms and seminorms: 

(1.4) IIVIIHm(n) =aE 12V dx1 

(1.5) IVIHm(n) =laoVE12 V dx) 

The rest of the paper is organized as follows. In ?2 we give the relevant 
results from the theory of partial differential equations on polygonal domains. 
We prove in Lemmas 2.2 and 2.3 that there exist uniform elliptic regularity es- 
timates for H U1HH2( 2) + A1 div U IIHI () for the boundary value problems (1.1) and 

(1.2). To the best of our knowledge, these estimates have not appeared explicitly 
in the existing literature in the context of convex polygonal domains. Section 
3 contains a discussion of the pure displacement problem, and ?4 contains a 
discussion of the pure traction problem. 

2. RELEVANT RESULTS FROM THE THEORY OF PARTIAL DIFFERENTIAL 

EQUATIONS ON POLYGONAL DOMAINS 

We consider the Lame constants (,u, A) in the range [,uo, , I] x (0, oc), where 
o < uo < ,uI < oo. We let C denote a generic positive constant, independent 
of ji and A, with its dependencies listed as its subscripts. The same symbol 
may take different values in different contexts. 

We begin with some properties of the divergence operator. 

Lemma 2.1. Let Q c R2 be any bounded polygonal domain and let I = 1 or 
2. There exists a positive constant Cn such that given any v c H'(Q) n Ho(Q) 

(respectively, v c H'(Q)), there exists w c H'(Q) n Ho(Q) (respectively, w E 

Hl(Q) (cf (1.3))) such that 

(2.1) divw =divv 

and 

(2.2) H1WH1HI(n) < CQ|| divVIIH1-1(.) 

Proof. If v c H'(Q) n HI(Q), then the existence of w with properties (2.1) 
and (2.2) follows from Theorem 3.1 and the inclusion (3.2) in [2]. It should be 
noted that the analysis for this case is much deeper than the following simple 
argument for the second case. 

If v c H'(Q), then divv c Hl-1(Q). Let D be an open disc that contains 

Q. There exists an extension operator (cf. [18]) E: Hl-I(Q) -* Hl-'(D) such 
that 

(2.3) JJE(q) HI-1(D) < Cnjjq11H-Il(n) Vq E Hc - (Q) 
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and 

(2.4) E(q)l= q lq E H'-1(Q2). 

Let C c H+'1 (Q) be the solution of 

AC = E(divv) in D, 
(2.5) onOD. 

C = 0 on AD. 
Then from elliptic regularity (cf. [18]) we have 

(2.6) |CHH+'I(D) < CHllE(divV)AHH-I1(D) 

Let 
w = grade Cl grad dx. 

It is clear that w E H'(Q). Properties (2.1) and (2.2) then follow from (2.3)- 

(2.6). El 

Since the boundary of a polygon has corners, the boundary conditions in (1.1) 
and (1.2) must be carefully interpreted. We shall denote by Si, 1 < i < n, the 
vertices of Q, by Fi, 1 < i < n, the open line segments joining Si to Si+I, 
by Ti the positively oriented unit tangent along Fi, and by vi the unit outer 
normal along Fi. Henceforth, indices involving the vertices and edges of Q 
should be interpreted as integers modulo n . 

Let p c H1/2(Fi) and q c H1!2(F1+1). We say that p -- q at Si+, if 

fl q(s) - p(-s)l2 d < oo, where s is the oriented arc length measured from 
Si+,, and ( is a positive number less than min{lFil: 1 < i < n}. 

Lemma 2.2. Let Q C R 2 be a bounded convex polygonal domain, f c L2(Q), 

gi E H3!2(F1), and gi(Si+1) = gi+1(Si+,) for 1 < i < n. Then the pure 

displacement problem 
-div{2jue(u) +.i tr(e(u))J } = f in Q, 

(2.7) 
ulr, = gi for 1 < i < n 

has a unique solution u c H2(K2). If we assume further that En=1 fI gi i vi ds 

0, and 
a a 

'gi- Vi+1- gi+1 VI 
arTia, 1~ 

aTi+1 - 11 

at Si+I for 1 < i < n, then there exists a positive constant Cn such that 

r n 
(2.8) lluIIH2(n) + iA |div UIIHIH() < Cn lif j IfL2() + Z IgiIH3/2 (oF)} 

Proof. The existence, uniqueness, and smoothness of the solution (2.7) are well 
known (cf. [14, 18, 21]). Here we will indicate how the estimate (2.8) can be 
obtained. 

Observe that the conditions on g, are equivalent to (cf. [2]) the existence 

of a function z c H3(Q) such that curl z I = gi for 1 < i < n, which 
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is a necessary condition for (2.8) to hold for all A c (0, oo). Moreover, it 
follows from Theorem 6.2 of [2] that z can be chosen with the property that 
I ZIIH3(n) ? C EZi=1 I Igi IIH3/2(F,) Therefore, it suffices to establish (2.8) for 

u - curl z, or equivalently, we may assume gi = 0 without loss of generality. 

In other words, we assume that u E H2(Q) n Ho(Q) satisfies 

(2.9) - div {2jue(u) +)itr(e(u))J5} = f in Q. 

We first show that there exists a positive constant Cn such that 

(2.10) IUIIHIH(n) +AlldivUHL2(n) ? Cllf 1IL2(n) 

Let w c Ho(Q). By integration by parts, it follows from (2.9) that 

(2.11) 2,uj e(u): e(w) dx + A (divu)(divw)dx = J fwdx. 

If we let w = u in (2.11), we obtain 

(2.12) 2u J E(u) e(u) dx < Ilf IL2(n)IIUIIL2(n). 

By using Korn's first inequality and Poincar&'s inequality (cf. [12, 18]), we have 

(2.13) ||UHIIHI() < C llf 1IL2(n)I 

By Lemma 2.1, there exists w* c Ho(Q) such that 

(2.14) divw* = divu 

and 

(2.15) IIW*IIHI(?) < C II divUIL2(n). 

It follows from (2.11) and (2.14) that 

A( J div U12 dx < HIf IIL2(n) |WJ |L2(n) 
(2.16) 111eQ- 

1~ 

+ 2,u E (U) 1IL2(n) || 8 (W*) 1IL2(n) 

Together with (2.13) and (2.15), we have 

(2.17) All divUlIL2(n) -< CQnll 1IL2(n)- 

The estimate (2.10) now follows from (2.13) and (2.17). 
Next we will show that there exists a positive constant Cn such that 

(2.18) IUIH2(n) + Al div UIHI(n) < Cnllf 1IL2(n) - 

Observe that it suffices to prove (2.18) for A > AO, where AO is a sufficiently 
large number. (The case A < AO follows directly from standard elliptic regularity 
estimates for (2.9).) 
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From Lemma 2.1, there exists q E H2(Q) n HIo(Q) such that 

(2.19) div q=div u 

and 

(2.20) kbHIHI2(n) < CQjjdivUHH1H(Q. 

Observe that equation (2.7) can be rewritten as 

(2.21) -,uAu - (u + A) grad (div u) = f . 

Define 

(2.22) u' :=U-q and p :=(- I+i)divu. 

Then (u', p) c (H2(Q) n HI(Q)) x H1(Q) satisfies the following Stokes equa- 
tions in Q: 

-Au' + gradp = + AO, 
(2.23) A s 

div u' = 0. 

Observe that by using (2.13) and (2.20) we have 

(2.24) kbHH2(n) < CQ(j div UIH1(n) + 1f 1IL2(n))- 

By Theorem 2 in [16], 

(2.25) 11UHH2(n) + IPIBH() < Cn {-11f L2(n) + ||AO$HL2(2)} 

Substituting (2.22) into (2.25) and applying (2.24) yields 

(2.26) IIUIH2(n) + -| divul ?H() < C{Il|f |lL2(n) + I divUaHI(n)} 

Let AO = 2Cnul , where Cn is the constant in (2.26). For A > AO, we obtain 
from (2.26) that 

(2.27) I1UHH2(n) + 2 VUIHI(n) < CnIlf 62(n)X 

which implies (2.18) for A > AO . C1 

We now turn to the pure traction problem. For this problem to be solv- 
able, certain compatibility conditions must be satisfied. For that purpose we 
introduce the space of infinitesimal rigid motions RM := {v: -t = (a + bx2, 

c-bxI), a,b,ccIR}. 

Lemma 2.3. Let Q C R2 be a bounded convex polygonal domain. Let f E 

L2(Q), gi E HI/2(]F), and gi * vi+I=gi+I * vi at Si+, for 1 < i < n. Assume 

the following compatibility condition to hold: 
n 

(2.28) f vdx+I gi V cds = V a RM. 
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Then the pure traction problem 

-div{2jue(u) +)Atr(e(u))>} = f in Q, 
(2.29) 

(28ue(u) +Atr(e(u))J)vjlr = gi, 1 < i < n, 

has a unique solution u E H2(Q) (cf. (1.3)). Moreover, there exists a positive 

constant CG such that 

(2.30) HIUlIH2(n) +All div UIHI(n) < Cn {Ilf 11L2(n) + E 1g1ilH1I2(r,)} 

Proof. The existence, uniqueness, and smoothness of the solution of (2.29) are 
well known (cf. [14, 15, 18, 21]). It remains to establish the estimate (2.30). 
In the case of a domain with smooth boundary, this estimate was proved by 
Vogelius in [22]. 

First we show that it suffices to establish (2.30) in the case f = 0. 

From Lemma 2.2, there exists a unique solution w c H2(Q) n Ho(Q) such 

that 

(2.31) -div{2,ue(w)+1Atr(e(w))J5}=f inKQ 

and 

(2.32) ||W|IH2(n) + All divWlH1(n) < CQf 1IL2(n). 

Let (a,c)t= fwdx, b= fnrotwdx,and 

(2.33) w* = w + (-a + bx2, -c - bx)t . 

Then w* c H2(Q) such that 

(2.34) -div{2yue(w*) +,Atr(e(w*))J} = f in Q 

and 

(2.35) ||W |HH2(n) + All divw* |HH(n) ? Clf 1IL2(n) 

Let 

qj = (2hue(w*) + Atr(e(w*))J)vilr' = 2,u(w*)vilr, + A(divw*)vilr,. 

From the trace theorem and (2.35), we have 

(2.36) llqi IH1I2(r,) <? Cllf 1IL2(n) . 
In view of the estimates (2.36), we may instead establish (2.30) for u - w*. In 

other words, there is no loss of generality if we assume f = 0 in (2.29). 

The compatibility condition (2.28) now becomes 

(2.37) Zj gids=0 and j(x2giI-xIgi2)ds=0. 
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Using (2.37), we can define (cf. [15, ?2]) gi, hi, and ki such that g1(S1) = 0, 

hi(SI) = 0, and for 1 < i < n, 

(2.38) gi(Si+1) = ,i+I(Si+O), hi(Si+1) = hi+, (Si+,), 

and 

(2.39) - i I= -gi2, a i2 = gil, ki = g * vi, -h =1 i* a~~~~i ~~~aT, 
It follows that gj e H3/2 (Fi), ,ki e H3/2(F,), and h, E H5/2(]F,). Moreover, we 

have 
n n 

(2.40) E(|ki uIIH3/2(ri) + I|hiI IH512(r)) < CQ E 11 gillHl2(rI-,) 
1=1 i=1 

Using the symmetry of {2,UE(u) + A(tr e(u)) 5} and (2.29) with f = 0, we can 

define (cf. [15, ?2]) the Airy stress function V such that 

a2 + Aa Au 
axY a9x2 ax,' 

a_ __ 
2 au1 au2 1 

(2.41) a2V = - ax2 + axlax2) LO ax,. 
a2V au1 aU2 
ay 2=(2i+ A) ax + A X ' 

and 

A2 = 0 on Q, 

(2.42) yif 
= hi onEi, 

a V/ =ki onEi. 
0 Vi Iri 

Note that (cf. [15, ?2] and [13, Theorem 1.5.2.8]) the conditions Xi(Si+1) = 

,i+j (Si+,), h,(Si+i) = hi+, (Si+,), and gi, vi+l gi+l - vi at Si+, for 1 < < n 

imply the existence of A E H3(Q2) such that 

(2.43) ali = hir , ki, 

and 
n 

(2.44) lI'-IH3(Q) 
< 

CQ2 Z{IkikIIH312(r) + 1IhiIIH5I2(r1)} I 

i=1 

It follows from (2.42) and (2.43) that 

A2(V/W _ A) = _A2A; on Q., 

(2.45) (VZ - 4~ri = ? on Fi, 

* (V I - I) |= 0 on Fi. a vi r 



LINEAR FINITE ELEMENT METHODS 329 

From the elliptic regularity of the biharmonic equation (cf. [6, 13]) we have 

(2.46) 11 V - HIIH3(n) ? CHIIA2A HH-1(n), 

which in view of (2.40) and (2.44) implies that 
n 

(2.47) 11 IIH3(n) ? CQ 1> llgHH112(r,) 
i=l1 

From (2.41), we have 

2Cu+X)divu= 
aX2 + aX2 O1 O2 

au, (2,U + A) 02 ,V A a2 

(2.48) Ox1 - 4u(u + A) ax2- 4,u(,u +A) aX' 
aU2 (2,U +A) 02 V A 0a2, 

1 [OuI OU21 1 OU2yiI , 
2 OaX2 ax+ 2,u= X1aX2 

Combining (2.47) and (2.48), we obtain 
n 

(2.49) All div U1HHI(n) < CQ llZgllH1/2(r,) 
i=l 

and 
n 

(2. 50) 11 16 Wa IIHI (Q) <~ CQ 11 9i IIH112(r,) 

By Korn's second inequality (cf. (4.2) below) and Friedrichs' inequality (cf. 
[18]), inequality (2.50) implies that 

n 

(2.5 1) H1u 11H1 (Q) <~ CQ I i llH1/2(r,,) 
i=l1 

Since the second-order derivatives of ul and u2 are linear combinations of the 
first-order derivatives of the components of e (u), we have by (2.50) that 

n 

(2.52) |UIH2(n) < CQ Z 1gjiH112(r,) 
i=l1 

Inequality (2.30) now follows from (2.49), (2.51), and (2.52). 51 

3. THE PURE DISPLACEMENT PROBLEM 

We shall only consider the case of homogeneous boundary conditions, i.e., 
gi = 0 for 1 < i < n. Our result can then be easily extended to the more 

general case where gi c H3!2(17), En=1 ifr g, * vi ds = 0, and 

O a 
gi * i+fo- r 1?*n Vi 

aTi, aTi+l , 

at Si+, for l< i< n. 



330 S. C. BRENNER AND L.-Y. SUNG 

The boundary value problem (2.7) can be rewritten as: 

-,u/u - (,u + A)grad(div u) = f in Q, 
(3.1) u=O on~2 

u =O on A2, 

where f E L2(Q). It has the following weak formulation: Find u E HI(Q) 

such that 

(3.2) 8 grad u: grad v dx + (iu + A) (div u)(div v) dx = f *vdx 

for all v eH(Q). 
By Poincare's inequality, there exists a unique solution to problem (3.2), 

which is therefore the solution of (3.1). From Lemma 2.2, we know that the 
solution is actually in H2(Q) n HI(Q) . 

In order to discretize (3.2), we introduce a triangulation ',. Here we let 
the subscript h represent the maximum of the diameters of the triangles in the 
triangulation. Let 

Vh = {V: V E L2(Q), VIT is linear for all TE c, 

(3.3) v is continuous at the midpoints of interelement boundaries 

and v = 0 at the midpoints of edges along aQ}. 

For v E Vh, we define gradhv and divh v by 

(3.4) (gradhv)lT = grad(vjT), 

(3.5) (divh v)IT= div(vI T) VTE ,, 

The discretized problem is: Find Uh E Vh such that 

tj gradhUh : gradhv dx + (I + A) j(divh uh) (divhv) dx 

(3.6) 

jf vdx 

for all v E Vh. 

Let ah (, *) be the symmetric positive definite bilinear form defined on Vh + 

(H2(Q) n HI(Q)) by 

ah(V1, v2) = _ gradhVl: gradhv2dx 

(3.7) 

+ (Y + A) J(diVh vl)(diVh V2) dx. Q1~ 1 1 
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Problem (3.6) can therefore be written as 

(3.8) ah(Uh, v)= J vdx 

for all v E Vh. By the positive definiteness of ah(., *) equation (3.8) has a 
unique solution Uh E Vh. 

We define the nonconforming energy norm h Ilk on Vh + (H2(Q) n H II(Q)) 
by 

(3.9) jv lkh = ah(v, v)1/2. 

It is obvious that 

(3.10) 11gradhviiL2(n) < JtO' 11VI1h. 

There is an interpolation operator Elk: H2(Q) n HI (Q) Vh defined by 

(3.1 1) (HIh0)(me) :ds, 

where me is the midpoint of edge e. Then (cf. [9]) 

(3.12) div(Hk )IT=j41Jdivbdx VTEgh, 

and 

(3.13) 110 - 1HiL2(Q) + hilgradh(q - H1q)L2(n) < Coh 2||H2(n), 

where 0 is the minimum of all the angles in the triangulation Sh. 

Theorem 3.1. There exists a positive constant CQ 0 such that 

(3.14) ||U - UhIlh < Cn,ohIl IIL2(Q) 

Proof. Our analysis closely follows that of Crouzeix and Raviart for the Stokes 
problem in [9]. Let u* be the ah(-, .)-orthogonal projection of u into Vh. 
Following [19], we can deduce an abstract discretization error estimate: 

IIU - UhIlh < ?IU - UhI1h + 11Uh - UhI1h 

Iah(Uh-Uh, V)I 
< inf I1u-vI1h+ sup ,h. 

( 3. 1 5 ) vEVh vEVh\{O?} VIkh 

Iak(U, v) - faf * v dxI 
< inf 1lu-vI1k+ sup 

vEVh vEVh\{1O} IIVIh 
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Using integration by parts, the weak continuity of v, and the Bramble- 
Hilbert lemma (cf. [7, 9]), we have 

3Jgradu: gradhv dx + JAu v dx 

(3.16) 

<C2,ohIUIH2(Q) IgradhVIIL2(Q) 

and 

Jdivudivh v dx + Jgrad(div u) * v dx 

(3.17) 
( ) ~~~~~< CQ, Ohl div UIHI(n) llgradhV 1IL2(n)- 

Combining (2.8), (3.1), (3.7), (3.10), (3.16), and (3.17), we have 

ah(u, v) -Jf vdx 

(3.18) ? Cz,ohllgradhv IL2(2){/llUIH2(2) + (u +A)ldivulH1(f)} 

? CQ,ohllvllhlf IIL2(Q). 

By Lemma 2.1 there exists u1 c H2(Q) n HI(Q) such that 

(3.19) divul = divu 

and 

(3.20) HU1HIIH2(Q) ? C11 div UIIHIH()- 

Combining (2.8) and (3.20), we have 

(3.21) HUI1HH2((Q) < ? +, llL2(Q) 

Note that (3.12) and (3.19) imply that 

(3.22) divh nh u 1 = divh nh U. 

Using (2.8), (3.7), (3.9), (3.13), (3.19), (3.21), and (3.22), we obtain 

inf (I|u- V11h) ?< II u-h hUIlh 
V EVh 

(3.23) = (,uj|gradh (u - Hhu)I~ L2( + (,u + A) 11 divh (UI - hu )IIL2(Q))I 

< Q follow b2 (Q) - 

The theorem now follows by combining (3.15), (3.18), and (3.23). C 
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Theorem 3.2. There exists a positive constant CQ, 0 such that 

(3.24) |U- UhlIL2(n) ? Cn,oh 21f 1IL2(n). 

Proof. The proof is based on a duality argument. We have 
f fn(u - uh) w w dxI 

(3.25) |U - UhIL2(n) sup WL2( ) 
~~~WEL2(j2)\{O} IIW IIL2(n) 

Given w c L2(Q), let c c H2(Q) n H (Q) satisfy 

-,uA - (,u + A)grad(div C) = w in Q, 
(3.26) 

4=0 onOQ 

and Ch E Vh satisfy 

(3.27) ah(Ch, V) =Jw.vdx VvEVh- 

By Lemma 2.2 we have the estimate 

(3.28) ICIIH2(n) +All div CIHI(n) < CnIIW IL2(n). 

By Theorem 3.1 we also have 

(3.29) IIC - Ch lh < CQ,ohIIw IL2(n). 

Using (3.27), the Cauchy-Schwarz inequality, and (3.8), we have 

4(U - Uh) * W dx| = lah(C, u) -ah(Ch, Uh)I 

= lah(C - Ch, U - HhU) + ah(C - Ch, f hu) 

(3.30) + ah(h-HhC, U -Uh) + ah(I'V, U -Uh) 

?<C - ''h|hlU f-HhUIlh + IV'h - 7rhCl|hHlU - Uhllh 

+ lah(C -Ch, I-hU)l + |ahJ1hC, U -Uh)I- 

Note that (3.14), (3.28), (3.29), and the argument that led to (3.23) imply 
that 

(3.31) IIC-ChilhllU-rhUllh+||4h-rh4||h||U-Uhllh < CQoh2IIWIIL2(Q)IIffIIL2(Q)). 
It remains to estimate Iah (rlh, U - Uh)I = Iah(rhC, U) - fnf. (lh )dxI and 

lah(C - Ch, flhU)l = lah(C, 171hu)-fQW 7hudxI . 
Using integration by parts, the weak continuity of lh C, and the Bramble- 

Hilbert lemma (cf. [9]), we have 

(3.gradhI2h) : gradudx + j hc *Audx 
(3.32) I <Q Q( I 

< CQ2 oh 2 
ICH2(2) IUIH2(j2) 



334 S. C. BRENNER AND L.-Y. SUNG 

and 

J (diVh flh0(div u) dx + Xf h *grad(divv) dx 
(3.33) ,' .,Q 

Cj2,oh'|C|H2 (Q) I div UlHI(Q). 

Combining (2.8), (3.1), (3.7), (3.28), (3.31), (3.32), and (3.33), we have 

ah(FIhV, U)- f. (fAC)dx 

(3.34) < CQ oh2lClH2(Q){J1tUlH2(Q) + (u + A)| divUIHI(Q)} 

< CQ Aoh2IIW IIL2 (Q) I If I IL2 (Q) . 

Similarly, we have 

(3.35) Iah(C - Ch, HlhU)I < CQ,oh2I|wIIL2(Q)1If IL2(Q). 

It follows from (3.30), (3.31), (3.34), and (3.35) that 

(3.36) j(U - Uh) * w dx < C?,oh2IIWIIL2(Q)IIfIIL2(Q). 

The theorem now follows from (3.25) and (3.36). E1 

4. THE PURE TRACTION PROBLEM 

We assume here that all the assumptions in Lemma 2.3 hold. To simplify 
notation, we shall write the sum ZI=1 fr, gi * v ds as f9 n g * v ds . The boundary 

value problem (2.29) has the following weak formulation: Find u E H1 (Q) (cf. 
(1.3)) such that 

2,J e (u) : 8(v)dx + A(divu)(divv) dx 
(4.1) Q 

- ^. 
Q 

e l 

f-vdx+ fg-vds 

for all V E H() 
The following Korn's second inequality is well known (cf. [10, 12, 18]): There 

exists a positive constant CQ such that 

(4.2) II8(V)IIL2(Q) ? CQjv|1Q VV E H 

In view of inequality (4.2), problem (4.1) has a unique solution, which is the 
solution of (2.29). From Lemma 2.3, we know that the solution is actually in 
H-12(Q) . H 

Let S; be a triangulation obtained by connecting the midpoints of edges in 
the triangulation Th . Define 

(4.3) Wh = {v E H (2): vIT is linear for all T e h} 11. ?11 I'l 1 



LINEAR FINITE ELEMENT METHODS 335 

and 

(4.4) M2h = {V e L2(Q): VIT is a constant for all T E 2h 

Let P0 be the orthogonal projection from L2(Q) onto M2h , i.e., for w e L2(Q) 

(4.5) J(Pow) dx = wv dx VV E M2h. 

The discretized problem, introduced by Falk in [10] (where a uniform conver- 
gence result based on a mixed formulation was outlined), is: Find Uh E Wh 
such that 

2y f c(Uh): e(v) dx + A (Po div Uh)(Po divv) dx 

(4.6) 
fv dx + gvds 

for all V E Wh- 

The discretized problem (4.6) is an example of the method of reduced inte- 
gration. We refer the readers to [17] for more information on this technique. 

Let ah(, *) be the symmetric bilinear form defined on H1 (Q) by 

(4.7) ah(vI, V2) = 2,u J (vi): e(v2)dx +A J(Podivvi)(Podivv2) dx. 

Problem (4.6) can be rewritten as 

(4.8) ah(Uh, V) =Jf vdx+ jg.vdx Vv CWh. 

By (4.2), ah(-, *) is positive definite. Hence (4.8) has a unique solution Uh E 

Wh. 

We define the (Sh-dependent) energy norm 11 j Ilh on H1(Q) by 

(4.9) IIV lh = ah(V, V) 1/2. 

It is obvious from (4.2) that there exists a positive constant CQ such that 

(4.10) IV IHI(Q) ? CQt1VIIh 

Let Jh: H2(Q) -_ Wh := {V E H1(Q): VIT is linear for all T e Sh} be 

defined in the following way. Let p be a vertex of h . If p is also a vertex of 
9h, then 

(4.11) (Jh'k(P) =(P). 

Otherwise, there exist two vertices Pi and P2 of -h such that p is the mid- 
point of the edge e connecting Pi and P2. Then 

2 'tCPO) + &(2) 
(4.12) (Jh4)(P) = 2 O1ds ) +(2) t1. el IeU- 2 
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By the divergence and curl theorems and the fact that Jh is piecewise linear, 

it is immediate that 

(4.13) div(JhT ) dx = Jdiv dx 

and 

(4.14) Irot(Jh) dx = Jrot dx 

for all T e 74h* 
Observe that (Jhq)IT = qIT if q is linear on T e S7h. Therefore, the 

Bramble-Hilbert lemma and a homogeneity argument imply that there exists a 
positive constant Co such that 

(4.15) 1kb - JhbIIL2(Q) + hq - JhAIHI(Q) < Coh2 IqIH2(Q) Vq E H2(Q)e 

Here, 0 is again the minimum angle in Sh. 
Let the interpolation operator 1lh be defined by 

(4.16) flh: = JhO- jJhq dx. 

Clearly, fQol7hqdx = 0, and in view of (4.14), fQ rot(FIhq) dx = 0 if fQ rotq = 

0. Therefore, 2h maps H2(Q) into Wh. 
From (4.13) we have 

(4.17) PodivH1$= Podivq VQ eH2(Q). 

It follows easily from (4.15) that 

11k - lhq$L2(Q) + hJq - flh1bHI(Q) 

(4.18) <CQ eh2kIH2() V e H2Q 

Theorem 4.1. There exists a positive constant CQ, 0 such that 

f ~ ~ ~~n 
(4.19) Ilu - UhIlh < CQ,oh IlfIIL2(Q) + llgillH1/2(r)1 

i=l J 

Proof. The proof of the following abstract discretization error estimate is the 
same as that of inequality (3.15): 

||u-uhhlh = inf llu-vllh 
vEVh 

(4.20) ah(u, v)-fQf vdx-faQgvdxI 
+ sup \ vl?h 
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Using (2.30), (4.1), (4.7), (4.10), and standard interpolation error estimates 
(cf. [8]), we have for v E Wh C H1(I) 

ah(u, v) f -vdx- g.vds 

= 2,uJ e(u) :(v)dx + A (Po divu)(divv)dx 

-Jf vdx- g J v ds 

(4.21) = iJ(Po div u - div u)(divv) dx 

? AilPo div u - divU II L2(Q) I div v IIL2(Q) 

n {lC O iv f|'lIL(Q) IV= (1)(Q 

? CQ,0oh If 11L2(Q) + Z 1gijIHl/2(r) 11VlIh 

By Lemma 2.1, there exists u E H2 (Q) such that 

(4.22) div u, = div u 

and 

(4.23) IIUi IIH2(Q) < Cull div UIIHI(Q) 

Combining (2.30) and (4.23), we have 

(4.24) IIU1 IIH2((Q) < 1+A {Ilf IIL2(j) + li~llH1/2(r,)} 

Note that (4.17) and (4.22) imply that 
(4.25) Po div Ilh u = Po div LIh U. 

Combining (2.30), (4.7), (4.9), (4.18), (4.22), (4.24), and (4.25), we obtain 
inf |Iu-v ||h < I| U-flhUllh 

= {2yuj (u-Hrhu): 8(U-FhO)dx 

r < ~~~~~~~1/2 
+ A J(Po div(u - HhU))2dX} 

(4.26) J 
? {2ulu - nhUI12(1) + ll div(u I l I1hUl)L2(0)) I 

? {CQ, oh 2(IU2(2) +AIU1IH2(Q))}' 

f ~ ~~n 
? CQ oh {Ilf IIL2(Q) + 1 IgiIIHl/2(rI) } 

The theorem now follows from (4.20), (4.21), and (4.26). El 
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